
Logical normal forms for classes of bounded-degree finite graphs closed under substructure 
 
Let K be a well behaved class of bounded-degree finite graphs – i.e. closed under substructure.  
 
Definition: The open diagram of a finite structure A is the sentence which existentially quantifies 
one variable for each distinct element of A, describing the truth or falsity of each atomic formula. 
For example, the open diagram of the finite graph A = 〈{a1,… an}, EA〉 is: 
 

οA ≡ (∃x1… xn)  /\{xi ≠ xj : 1 ≤ i < j ≤ n} ∧  
 /\{E(xi, xj) : A |= E(ai, aj), 1 ≤ i < j ≤ n} ∧ 
 /\{¬E(xi, xj) : A |≠ E(ai, aj), 1 ≤ i < j ≤ n} 

 
Intuitively, οA means “contains A”, so B |= οA if and only if there is an embedding from A into B. 
 
Note: K must also be closed under (finite) substructures of its pseudo-finite models because if a 
finite A ⊆ B |= Th(K), then B |= οA, so the open diagram of A is consistent with Th(K). This 
means there must be a finite model A′ |= οA with A ⊆ A′ ∈ K. But K is closed under substructure, 
so A ∈ K.  
 
Definition: The closed diagram of a finite structure A is the open diagram together with a clause 
stating there are no other elements connected to A. For example, the closed diagram of A is: 
 

χA ≡ (∃x1… xn)  /\{xi ≠ xj : 1 ≤ i < j ≤ n} ∧  
 /\{E(xi, xj) : A |= E(ai, aj), 1 ≤ i < j ≤ n} ∧ 
 /\{¬E(xi, xj) : A |≠ E(ai, aj), 1 ≤ i < j ≤ n} ∧ 
                [(∀y) /\{y ≠ xk : 1 ≤ k ≤ n} → /\{¬E(y, xk) ∧ ¬E(xk, y): 1 ≤ k ≤ n}] 

 
See that B |= χA if and only if there is a disjoint embedding from A into B — i.e. in such a way 
that no element of A is connected to anything outside of A. 
 
Definition: We will say that set of first-order sentences N is descriptive for a class of finite 
structures K if for each A in K, there are sentences εA and δA in the Boolean closure of N such that 
K |= εA ↔ οA and K |= δA ↔ χA.  Observe that these equivalences must necessarily also hold on all 
pseudo-finite models. I.e. for all models B |= Th(K) 
 

1. B |= εA if and only if A is embeddable in B, and 
2. B |= δA if and only if A disjointly embeddable in B. 

 
Definition: We say that a set of first-order sentences N is a sentential normal form over K if every 
first-order sentence ϕ is equivalent to a (finite) Boolean combination of sentences in N. 
 
Theorem: N is a sentential normal form for K if and only if N is descriptive for K. 
 
Proof: One direction is fairly trivial because, as we have illustrated above, there are first-order 
sentences that can express, for any finite model, whether it is embedded or disjointly embedded. 
     In the other direction, let T = Th(K), and let the N-theory of A, ThN(A) = {ψ ∈ N: A |= ψ}, be 
the sentences in N true of A. It suffices by the corollary on page 9 of [E&F] to show that any two 
models A and B of T with the same N-theory are elementarily equivalent.  



     If A and B are finite, then A |= εA ⇒ B |= εA implies A is embeddable in B. Similarly, B |= εB 
⇒ A |= εB implies B is embeddable in A, hence A and B are isomorphic.  (could use δ instead) 
     Suppose towards a contradiction that A is finite and B is infinite. Take any finite A′ ⊆ B larger 
than A. As observed earlier, K contains every finite substructure of its pseudo-finite models, so A′ 
∈ K. By hypothesis, εA′ ∈ ThN(B) means A |= εA′, which is impossible because |A′| > |A|.  
     If A and B are infinite, it suffices to consider saturated models the size of the continuum (i.e. 
we assume the continuum hypothesis and choose to consider only ultraproducts over K, one for 
each complete theory extending T), aiming to show they are isomorphic. Notice that just as in the 
previous case, any finite substructure of A or B is a finite model in K.  In particular, by satisfying 
the same closed diagrams (this is the only place δ is used), all finite components of A and B occur 
in the same quantity (finite or infinite).  It remains to be seen that the infinite components also 
occur in the same quantity.  The idea is to use limits of local neighborhoods to characterize each 
countable component. Suppose k × A′ ⊆ A, i.e. A contains k identical copies of the countably 
infinite component A′, and choose any a ∈ A′. For each radius r, let Nr(a) be the r-neighborhood 
around a, which is finite because all our structures are bounded-degree.  Let A″ = k × Nr(a) be the 
finite substructure of A, which as observed earlier must be in K. By hypothesis, A |= εA″ ⇒ B |= 
εA″, which means that A″ is embedded in B. To see that the entire countable sub-model k × A′ is 
embedded in B, we need to use a saturation argument.  Let λr(x) be a complete description of 
Nr(a), and let μr(x1… xk) be the formula that describes k identical disjoint such r-neighborhoods:  
 

μr(x1… xk) ≡ /\{d(xi, xj) > 2r : 1 ≤ i < j ≤ k} ∧ /\{λr(xi) : i = 1, …, k} 
 
The k-type Λ(x1… xk) ≡ {μr(x1… xk) : r = 0, 1, …} is realized in B because it is finitely realized. 
Therefore, there are k disjoint copies of A′ appearing in B. It is easy to see now that any 
countably graph is embedded the same number of times (finite or infinite) in A or B. To end the 
proof, it is necessary to observe that no type can be realized a countably infinite number of times 
(in an uncountably saturated model). To see this, let τ(x) be a type over a countably infinite subset 
A of |A| and suppose B = {a : A |= τ(a)} were countably infinite. But then τ(x) ∧ {x ≠ b : b ∈ B} 
would be a finitely consistent type over A ∪ B which is not consistent – contradiction. 

−| 
Gaifman normal form (sentential) for bounded-degree graphs (inspired by pp. 31-32 of [E&F]). 
 
Definition: Let G be the set of basic local sentences, and ThG(A) the Gaifman theory of A.  
 
Corollary: If C is a class of finite bounded-degree graphs, then any first-order sentence is 
equivalent over T  = Th(C) to a Boolean combination of basic local sentences. 
 
Proof: By the theorem, it suffices to show that G can express the finite embedding conditions. 
For each finite A, the open diagram οA is already a basic local sentence of radius zero. For the 
closed diagram, it is enough to express the disjoint embedding of k identical copies of each 
connected component C. Up to isomorphism, C can be described by a local formula γ(d)(x) of 
radius equal to the diameter d of C around some chosen center vertex x. So k × C is: 
 

(∃x1… xk) ∧ /\{d(xi, xj) > 2d : 1 ≤ i < j ≤ k} ∧ /\{γ(d)(xi) : i = 1, …, k} 
−| 
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